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ABSTRACT
Objectives: Cartilage defects (CDs) are regarded as early manifestation of osteoarthritis (OA). The 
infrapatellar fat pad (IPFP) is an important mediator in maintaining joint homeostasis, disease progres
sion and tissue repair, with a crucial role of its secreted proteins. Here, we investigate the proteome of 
the IPFP in relation to clinical status and response to surgical treatment of CDs.
Methods: In order to characterize the proteome of the IPFP, samples from a cohort of 53 patients who 
received surgical treatment for knee CDs were analyzed with label-free proteomics. Patients were 
divided based on validated outcome scores for pain and knee function, preoperatively and at 1-year 
postoperatively, and on MRI assessment of the defect severity, fibrosis and synovitis.
Results: Specific proteins were differentially abundant in patients with MRI features and better clinical 
outcome after CD surgery, including a downregulation of cartilage intermediate layer protein 2 (CILP-2) 
and microsomal glutathione s-transferase 1 (MGST1), and an upregulation of aggrecan (ACAN), and 
proteoglycan 4 (PRG4). Pathways related to cell interaction, oxidation and matrix remodeling were 
altered.
Conclusion: Proteins in the IPFP that have a function in extracellular matrix, inflammation and 
immunomodulation were identified as potentially relevant markers for cartilage repair monitoring.
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1. Introduction

Osteoarthritis (OA) has become one of the leading causes of 
disability worldwide, with an estimated total of 250 million 
people suffering from the condition [1]. No effective treatment 
exists in later stages of the disease. Cartilage defects (CDs) are 
seen as one of the initiating factors of OA, as patients will 
develop OA later in life if not treated adequately [2]. Surgical 
treatment to restore and preserve the joint is often advised, 
with a wide range of available treatment options, such as 
microfracture, autologous chondrocyte transplantation, osteo
chondral autograft/allograft transplantation, or focal knee res
urfacing implants (FKRI) [3]. Current treatment decision- 
making for CDs is mainly dependent on subjective assessment 
and experience of the performing surgeon [3], with no evi
dence for why some patients respond well to each treatment 
and others not [4]. However, in vitro studies have shown that 
restoration of cartilage matrix by the chondrocytes in the 
cartilage is heavily dependent on the homeostasis of the 
joint [5,6]. Therefore, taking into account the biomolecular 
status of the joint can be highly relevant for the treatment 

decision. In particular, proteins play several important roles in 
the context of OA. Understanding the roles of various proteins 
in OA pathogenesis is crucial for developing targeted thera
peutic interventions aimed at preserving joint function and 
alleviating symptoms in affected individuals.

Previous research has shown that the different stages of OA 
have distinctive molecular profiles in synovial fluid [7]. 
Although this information is valuable for diagnostic purposes, 
its effect on clinical decision-making is limited if these mole
cular profiles are not coupled to progression of disease or 
response to different treatments. Current diagnostic tools 
like MRI can only assess the present state of the disease, 
differentiating between healthy and diseased stages at 
a single point in time, but they cannot predict the future 
course or prognosis of the disease. Therefore, it is recognized 
that biomarker research should focus on course of disease, 
rather than only on status [8]. CD patients are at a crossroad to 
either progression toward OA or restoration of the cartilage 
and clinical function. Therefore, in this patient group, biomar
kers that are related to enhanced repair can make a clinically
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relevant difference in the treatment decision. However, 
a recent systematic review only identified 1 study with 17 
patients with biomarkers related to outcome of cartilage 
repair surgery [9].

The most studied source for biomarkers in the OA field is 
synovial fluid [7], however, in CD patients synovial fluid is 
difficult to harvest due to frequent absence of synovitis (swol
len knee). An underexplored source for biomarker discovery is 
the infrapatellar fat pad (IPFP), located behind the patellar 
tendon in the knee joint. It is increasingly recognized that 
the IPFP plays an important role in OA pathology and devel
opment [10,11]. The IPFP interacts with the processes inside 
the joint, as it mediates inflammation via the synovial layer 
and fluid [10]. Previously, it was found that the IPFPs of late- 
stage OA patients have significantly different molecular pro
files compared to CD patients, regardless of age [12]. 
Furthermore, the secretome of the IPFP showed overlap with 
OA-specific protein profiles of synovial fluid [13]. In addition to 
this, part of the IPFP is routinely removed to improve visuali
zation during surgery and as such regarded as waste material 
during knee surgery when accessing the joint. Thus, the IPFP 
may be a practical source of clinically relevant biomarkers.

To explore the feasibility of this concept, a general over
view of the IPFP proteome in the CD population is first 
needed, and then related to clinical parameters. Therefore, in 
the present study, we aim to investigate the role of the IPFP in 
the degeneration and repair of CDs, in relation to patient 
diagnosis and treatment outcome. To achieve this, we inves
tigated the proteome of IPFP samples from a cohort of CD 
patients who underwent surgical treatment and correlated the 
different protein profiles obtained with label-free proteomics 
with patient outcome.

2. Materials and methods

2.1. Patient samples

Patients were prospectively included if they were scheduled 
for any type of knee CD surgery in the period November 2018 
until July 2021. The local Medical Ethics Committee confirmed 
that the use of waste material and questionnaires are not 
subjected to medical-ethical restrictions by national laws (ID: 
anonymized). Written consent for the use of waste material for 
research was obtained prior to surgery.

To assess the outcome parameters, we collected patient- 
reported outcome measures (PROMs). For the PROMs, we 
recorded the knee injury osteoarthritis outcome scores 
(KOOS), a measure for knee function, and a visual analog 
scale (VAS) for knee pain from the patients before surgery 
and 12 months after surgery. Magnetic Resonance Imaging 
(MRI) was conducted prior to surgery to evaluate defect and 
IPFP tissues. The imaging acquisition took place on 1.5 and 3 
Tesla whole-body imaging systems utilizing an extremity coil. 
The MRI protocol included sagittal, coronal, and transversal 
images through a turbo spin echo sequence with and without 
fat suppression, as well as a sagittal 3-dimensional proton 
density sequence. All MRIs were evaluated by 
a musculoskeletal radiologist (FZ) with 15 years of experience, 
who was unaware of the clinical findings. The IPFP was graded 

for severity of fibrosis and synovitis as used in a validated OA 
MRI grading on a 0–3 scale, 3 being most severe [14]. 
Furthermore, the MRIs were graded for severity of the carti
lage defect using the area measurement and depth & under
lying structures (AMADEUS) score [15] on a 0–100 scale, 0 
being most severe.

For each of the PROMs and MRI parameters, a threshold 
was established based on the minimal clinically important 
difference (MCID) or conventionally used cutoff values 
(Table 1). Moreover, based on the radiologist’s grading of 
MRI scans, patients were allocated into a low degree of fibrosis 
group (graded as no fibrosis) or a high degree of fibrosis 
group (graded as either mild or moderate fibrosis).

During surgery, IPFP samples were immediately washed in 
phosphate-buffered saline (PBS) to remove any remaining 
blood from the tissue. Explants were then snap-frozen by 
immersing them in liquid nitrogen and stored at −80°C until 
further analysis.

2.2. Protein extraction

From the IPFP samples of 53 CD patients, 15 μm cryosections 
were obtained using a cryostat (Leica Microsystems Cryotome, 
Wetzlar, Germany) covered in dry ice to maintain the tempera
ture between −30 and −35°C [16]. A minimum of 20 sections 
of IPFP from each patient were collected in an Eppendorf 
tube. All sections were stored at −80°C until protein digestion. 
Proteins were extracted through an in-house developed pro
tocol, taking into account the considerations of Feist et al. [17], 
which emphasized selecting a lysis buffer to enhance protein 
solubility and denaturation without interfering with MS analy
sis. For this purpose, a lysis buffer containing 5 M urea (GE 
Healthcare, Chicago, US) and 50 mm ammonium bicarbonate 
(ABC, Sigma-Aldrich, Saint Louis, US) was used. After briefly 
spinning down the sample, three freeze-thaw cycles were 
performed using dry ice and water bath sonication, followed 
by a brief vortexing at 2000 rpm for 10 seconds, with no 
incubation period between cycles. The samples were then 
centrifuged for 30 min at 15,000 × g at 10°C to remove inso
luble particles. Total protein content was determined through 
Bradford Protein Assay (Bio-Rad Laboratories, Hercules, US) 
according to the manufacturer’s protocol. Absorption was 
measured at 595 nm (optical density) using a Spark 10 M 
microplate reader (Tecan, Männedorf, Switzerland).

2.3. Protein digestion

Protein digestion was performed using an in-solution proto
col with 50 µg protein in 50 µl lysis buffer per sample, as 
previously described [18]. In brief, denaturation and reduc
tion were achieved by adding 5 µl dithiothreitol (DTT, 
200 mm in 50 mm ammonium bicarbonate (ABC) buffer), 
followed by incubation for 45 min at room temperature 
(RT). Next, 6 µl iodoacetamide (IAM, 400 mm in 50 mm ABC 
buffer) were added for alkylation, followed by incubation for 
45 min at RT in the dark. To quench the excess of IAM, 10 µl 
of 200 mm DTT was added, followed by a 45 min incubation 
at RT. Protein digestion was initiated by adding 2 µl trypsin/ 
Lys-C solution in resuspension buffer (Promega, Leiden, the
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Netherlands), followed by incubation in a Thermoshaker 
(Eppendorf, Hamburg, Germany) at 250 rpm and 37°C. After 
2 h, 200 μl of 50 mm ABC buffer was added to each sample 
and incubated overnight at 250 rpm and 37°C. Digestion was 
stopped by adding 30 μl of 20% acetonitrile (ACN, Biosolve, 
Valkenswaard, the Netherlands)/10% formic acid (FA, 
Biosolve, Valkenswaard, the Netherlands). After 30 min of 
centrifugation at 15,000 × g, supernatants were stored at 
−20°C until LC-MS analysis.

2.4. Liquid chromatography tandem mass spectrometry 
(LC-MS/MS)

Proteomic analysis was performed on a Thermo Scientific 
Ultimate 3000 Rapid Separation UHPLC system (Dionex, 
Amsterdam, the Netherlands), coupled to a Q-Exactive HF 
mass spectrometer (Thermo Fisher Scientific, Waltham, MA, 
U.S.A.), equipped with a PepSep C18 analytical column (15  
cm, ID 75 µm, 1.9 µm Reprosil, 120 Å). Samples were 
desalted on a C18 trapping column and separated on an 
analytical column with a 90-minute linear gradient (5%–35% 
ACN with 0.1% FA, flow rate 300 nL/min). Mass spectra were 
acquired in positive ion mode and in data-dependent 
acquisition mode (DDA) using a mass-to-charge ratio (m/z) 
of 250–1250 at a 12,000 resolution. MS/MS scans were 

acquired from the 15 most intense ions at a 15,000 resolu
tion [18,19].

2.5. Data analysis

MS-based proteomics data was analyzed using Proteome 
Discoverer (PD) Software version 2.5 (Thermo Fisher Scientific, 
Waltham, MA, US). Proteins were identified and quantified using 
the built-in Sequest HT search engine with SwissProt (Human) 
database (Homo sapiens, Tax ID 9606) with the following settings: 
enzyme trypsin, a maximum of 2 missed cleavage sites, 
a minimum peptide length of 6 and maximum of 144, 
a precursor mass tolerance of 10 ppm, and fragment mass toler
ance of 0.02 Da. Dynamic modifications of methionine oxidation 
(+15.995 Da) and protein N-terminus acetylation (+42.011 Da) and 
static modification of carbamidomethylation (+57.021 Da) were 
used. A false discovery rate (FDR) of ≤ 1% was applied.

2.6. Statistical analysis

The description of each clinical parameter used for evaluation, 
based on the minimal clinically important difference (MCID), as 
well as the cutoff values used are depicted in Table 1 [15,20– 
27]. Normality of data was assessed using Shapiro-Wilk test. If 
normal distributed, difference in clinical outcome was

Table 1. Summary of the different clinical parameters used in the study, their cutoff values and previous literature using said parameters and thresholds.

Parameter Description Cut-off value (Number of patients) Reference

KOOS Patient-reported outcome 
measure related to pain and 
function of the knee. The 
questionnaire is divided 
into 5 subscales with a total 
of 52 items, from which 
a score is obtained out of 
100, where lower scores 
represent higher degrees of 
disability

Preoperative (KOOS0): 

● ≤45
● >45

t = 1 year (KOOS1Y): 

● ≤75
● >75

Difference (ΔKOOS= KOOS1Y- KOOS0): 

● ≤10
● >10

[20–22]

VAS 10 cm visual analog scale for 
self-reported pain intensity. 
Higher scores correspond 
with higher pain intensities

Preoperative (VAS0): 

● ≤5.8
● >5.8

t = 1 year (VAS1Y): 

● ≤2.4
● >2.4

Difference (ΔVAS = VAS1Y – VAS0): 

● > −2.7
● ≤ −2.7

[23,24]

MRI: IPFP fibrosis Extent of thickening or 
scarring of the fat pad seen 
in pre- and postoperative 
MRI scans as assessed by 
a radiologist

No fibrosis 
Mild/moderate

[25–27]

MRI: IPFP synovitis Extent of fluid accumulation 
around the fat pad seen in 
pre- and postoperative MRI 
scans as assessed by 
a radiologist

No/low synovitis 
Moderate/high synovitis

[25–27]

MRI: AMADEUS Severity of cartilage defect, 
assessed by a radiologist

Mild/moderate (>25) 
Severe (≤25)

[15]
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assessed between baseline and follow-up PROMs using paired 
t-tests in IBM SPSS Statistics for Windows (Armonk, NY), and 
differences between surgical procedures were assessed using 
one-way ANOVA. Welch’s t-test was performed to assess the 
effect of sex on each clinical parameter. Protein abundance 
was normalized based on the total peptide amount, using 
scaling without any imputation. Differences of protein abun
dance associated with clinical status (IPFP fibrosis, IPFP syno
vitis, AMADEUS) and clinical outcome measures were 
compared using pairwise peptide ratios and background- 
based ANOVA [28] with a Benjamini-Hochberg correction 
used for hypothesis testing in PD. Proteins were considered 
to be differentially abundant between patient groups when 
their abundance ratios were ≥ 1.5 in either group. Only pro
teins observed in at least 60% of patients in either group with 
an abundance ratio adjusted p-value of ≤ 0.05 between 
groups, were considered for further analysis. Data integration 
for pathway and gene ontology (GO) enrichment was per
formed with STRING-db [29] and ShinyGO 0.77 (http://bioinfor 
matics.sdstate.edu/go/)

3. Results

IPFPs were collected during cartilage surgery at the anon
ymized (MUMC+) hospital. Fifty-three cartilage repair patients 
were included (male/female: 35/18). Patients received a range 
of surgical procedures, which reflects the clinical practice: 
regenerative therapies, osteochondral autografting, or FKRI 
[30]. 50 patients had isolated cartilage defects, with 2 conco
mitant ACL rupture, and 1 meniscal tear. As the hospital is 
a tertiary referral center, most cases had complaints for a long 
time, with only two cases with a known acute trauma in the 
previous year. No statistically significant differences between 
surgical procedures were observed through the use of a one- 
way ANOVA for any of the PROMs or MRI parameters.

Due to hampered patient contact due to COVID-19 restric
tions, only from 51 patients MRIs were retrieved, from 43 
patients questionnaires could be retrieved at t = 0, and from 
41 patients at t = 1 year. However, of all patients at least one 
comparison using MRI or PROMs was available. The total 
number of patients per group can be found in Table 2. The 
average KOOS score at t = 0 (preoperative) was 44.7 ± 18.1 (n  
= 43) and the average VAS was 5.5 ± 2.3 (n = 43). At the 1 year 
follow-up, the average KOOS increased to 67.1 ± 20.3 (p <  
0.001), and the average VAS was reduced to 3.0 ± 2.9 cm (p  
< 0.001) (Table 2). These data reflect the good average clinical 
improvement after the surgical treatment, but also that there 
is a great variance due to non-responders.

3.1. Characterization of the IPFP proteome

A total of 1209 proteins were identified at high confidence 
level (1% FDR) from the 53 IPFP samples. The biological mole
cular function of these proteins was enriched using the online 
bioinformatics tool ShinyGO 0.77. In the IPFP tissues of CD 
patients, the identified protein functions in the IPFP tissues of 
CD patients primarily involve cell structure and motility, cellu
lar interaction and signaling, gene expression regulation, 
redox balance and detoxification of reactive oxygen species, Ta
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molecular degradation and turnover, extracellular and struc
tural support, and protein synthesis (see Figure 1 for the top- 
20). A comprehensive list of all high-confidence proteins is 
provided in the supplementary material (Table S1). Many pro
teins were identified that are directly related to cartilage 
homeostasis, such as aggrecan (ACAN), collagen type II, IX, 
XI, Fibronectin (FN1), cartilage intermediate layer protein 
(CILP), cartilage oligomeric matrix protein (COMP), matrix 
metalloproteinase 3&9 (MMP3&9) and chondroadherin 
(CHAD). The identification of many integrins (ITGA2&5, 
ITGB1&3) indicate activity of mesenchymal stem cells. The 
presence of oxidative-stress related proteins (e.g. superoxide 
dismutase (SOD1, SOD2), glutathione peroxidase (GPX1), per
oxiredoxins (PRDX1, PRDX2) show the inflammatory state 
which can be expected in the affected joints.

3.2. Protein profiles associated to MRI assessment

First we assessed the relation between the physiological 
state of the joint at the time of surgery (t = 0) and the protein 
profiles of the IPFP. Therefore, we analyzed the proteins that 
were differently abundant between groups based on the 
three MRI assessments (n = 51), scored binary as high/low 
(Table S2). In relation to the severity of cartilage defect 
(AMADEUS score), 22 proteins were differentially abundant 
(Figure 2(a)). Upregulated proteins include matrix- 
remodeling protein matrix metalloproteinase-3 (MMP3) and 
actin-related protein 2/3 complex subunit 2 (ARPC2), which 
plays a role in osmolarity of cartilage [31]. Downregulated 
proteins included hemoglobin and proteins regulated by 
hematopoietic progenitor genes. In patients with higher 
synovitis scores, 23 proteins in the IPFP were found to have 
differential abundance. Higher synovitis score was related to 
downregulation of hemoglobin subunits, ACAN, apoptosis 
(MAP1S) and osteonectin (SPARC) (Figure 2(b)). Both in 
patients with synovitis and more severe cartilage defect, 
carbonic anhydrase II (CA2), a protein active in bicarbonate 
and pH regulation, was downregulated. For patients with 

high fibrosis, a total of 23 proteins were found to be differ
entially abundant (Figure 2(c)). Upregulated proteins 
included CILP2, proteins related to lipid metabolism and 
prostaglandin synthesis (MGST1), as well as oxidative stress 
regulator NAD(P)H:quinone oxidoreductase 1 (NQO1), which 
may play a role in OA development [32]. Proteins related to 
immune response (immunoglobulins, S100A9, CD5L) were 
found to be downregulated. Pathway analysis of the proteins 
differentially associated with any of the three MRI variables 
revealed that oxidative stress, immune, and extracellular 
matrix reorganization pathways were the most impacted 
(Figure 2(d)).

3.3. Protein profiles associated to patient reported 
outcome measures

Next, we analyzed the differences in protein abundance related 
to the PROMs (Table S3). Two (COL5A2, COL1A1) and 7 proteins 
(Figure 3(a)) were found to be differently abundant in the 
groups with worse KOOS and VAS, respectively, at the preo
perative assessment (n = 43). Proteins related to biochemical 
breakdown and remodeling (MMP3, ACTA1, COL1A1, CILP2 
and COL5A2) were the most affected. Eleven and 24 proteins 
were differently abundant in the groups that improved more 
than the MCID at follow-up (n = 34) in the KOOS (Figure 3(b)) 
and VAS (Figure 3(c)), and thus responded well to treatment. 
Those proteins included proteins related to extracellular matrix 
and connective tissue (PRG4, ACAN, CILP2, COL15A1), and mar
kers related to lipid metabolism, oxidation and transport (CD36, 
CES1, PLA2G2A, MGST1, FABP3). PLA2G2A specifically is linked 
to OA-related metabolic pathways [19], and there are drug 
treatments targeting inhibition of this protein [33]. These obser
vations were also reflected in the pathway analysis based on all 
proteins differentially expressed in any of the comparisons in 
relation to PROMs (Figure 3(d)), which highlighted connective 
tissue remodeling and lipid homeostasis, extracellular matrix 
and exosome signaling.

Figure 1. Visualization of functional enrichment analysis results based on 1209 identified proteins found in IPFP samples from 53 CD patients. The top 20 gene 
ontology (GO) molecular function terms with a fdr-value <0.001 and an enrichment factor ≥ 3 are represented as bars, with colors indicating the -log10(FDR) value.
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3.4. Overlapping proteins

Finally, to assess which markers are related to multiple clinical 
variables, we summarized the proteins that were identified in 
multiple comparisons in Figure 4. Several extracellular matrix 
markers were identified in several comparisons, including 
MMP3 (pain and defect severity), ACAN (function response and 
synovitis), COL5A2 (function and defect severity), and CILP2 
(pain, function response, fibrosis, and synovitis). Other markers 
are related to lipid metabolism, oxidation and transport 
(PLA2G2A (pain and function response), MGST1 (pain response 
and fibrosis), FABP3 (pain and function response), immune sys
tem (IFI30 (pain and function response), DEFA1 (pain response 
and defect severity), MGST1 (pain response and fibrosis) and 
cytoskeleton structure (ACTA1, pain and fibrosis). ACAN, CILP2, 
and MGST1 were the three markers that were related to both 
a preoperative (MRI) variable and to response (ACAN as positive 
predictor, CILP2 and MGST1 as positive predictor).

3.5. Effect of confounding factors

Due to an imbalance in sex distribution (18 females, 35 males), 
a comparative analysis was conducted to assess the effect of sex 

as potential confounding factor. Therefore, a Welch’s t-test was 
performed to evaluate if outcomes were affected by sex differ
ences. Table S4 shows that no statistical differences were 
observed between females and males. However, to exclude 
that sex differences at the molecular level were associated to 
protein modulation, a comparative analysis on the IPFP pro
teome was also performed (Table S5, Figure S1). Only 
Haptoglobin (HP), increased in females, was also correlated 
with the low-fibrosis group, which had a higher proportion of 
females (see Table 2). Other proteins such as Ubiquitin-60S ribo
somal protein L40 (UBA52), Epoxide hydrolase 1 (EPHX1) and 
Cytochrome c (CYCS) were detected with higher abundance in 
females. These proteins were correlated with the low-synovitis 
(UBA52) and the poor pain recovery group (EPHX1,CYCS). Given 
that the number of females was decreased in those groups (see 
Table 2), the observed changes in these proteins are likely less 
influenced by sex.

4. Discussion

This is the first study to characterize the proteome of the IPFP 
and its relation to clinical parameters during cartilage repair.

Figure 2. Protein regulation in CD patients associated with three MRI characteristics, including AMADEUS scores, synovitis and fibrosis. (a–c) plots of Log2(fold 
change) for each of the significantly (abundance ratio adjusted p-value <0.05) dysregulated proteins, based on a quantified level of high versus low cartilage defect 
severity (a), high versus low synovitis (c), high versus low fibrosis (E). d: functional enrichment analysis on GO molecular function with ShinyGO, shows the 
significantly altered molecular functions based on the comparisons in a-c. Bars show fold enrichment, with colors indicating the -log10(FDR) value.
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The differentially abundant proteins suggest an active interac
tion between cartilage repair and the IPFP.

Proteins that were found to be differentially abundant in 
the IPFP were related to the function of cartilage and its 
formation, such as ACAN, COL5A2, CILP2 and MMP3, including 
proteins that are classically associated to articular cartilage 
(PRG4, ACAN, COL12A1) under physiological conditions and 
those that regulate cartilage production by upregulating pro
duction of matrix metalloproteinases (MMP3). ACAN is one of 
the essential building blocks of healthy cartilage [34], as the 
protein attracts and binds the water that gives the cartilage its 
unique mechanical properties, and was found in both func
tional response to treatment and the synovitis score. 
Stimulation of ACAN production is therefore a key factor in 
the cartilage repair process [35]. While ACAN was positively 
related to treatment outcome, and downregulated with syno
vitis, the opposite was observed for cartilage inter-layer pro
tein-2 (CILP-2), which has been frequently identified as serum 
marker for OA progression [36,37]. Metalloproteinases are 
involved in breakdown of matrix, especially the collagen 

backbone that is essential for the mechanical stability of the 
matrix [38]. They are seen as a key driver of cartilage break
down, leading to irreversible damage [39]. Furthermore, they 
play key roles in the inflammation response [39]. In another 
smaller study (N = 17), the single non-responder in a cartilage 
repair study showed also high expression of MMP3 [40].

A second group of proteins that was found to have 
a different abundance in clinical subgroups are related to 
bicarbonate metabolism and transport. The most important 
proteins in this subgroup are the carbonic anhydrase isoforms 
(CA1, CA2), the bicarbonate transporter AHCYL2, NQO1 and 
the hemoglobin subunits. Two possible explanations exist for 
the changed abundance of these proteins: firstly, they can 
contribute to the acidosis observed in diseased joints; or 
secondly, increased angiogenesis in the IPFP combined with 
a poor clearance of blood components increases the abun
dance of these proteins in the tissue. Previous studies have 
highlighted the role of acidic environments in the pathophy
siology of OA, suggesting that this factor is responsible for 
worsening symptoms and increased pain scores [41]. Also,

Figure 3. Protein regulation in CD patients associated with knee pain (KOOS) and function (VAS) scores. (a–c) Plots of Log2(fold change) for each of the significantly 
(abundance ratio adjusted p-value <0.05) dysregulated proteins, based on a quantified level of high versus low pre-operative VAS, or low versus high pre-operative 
KOOS score (a, COL5A2, COL1A1 found as markers for KOOS, the rest as markers for VAS), surpassing the MCID of the KOOS (b) and the VAS (c). (d) Functional 
enrichment analysis with STRING database, showing significant protein-protein interactions in IPFP based on the comparisons in (a–c).
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oxidative stress of chondrocytes is related to OA formation 
[32]. In support of the second possibility, it is well recognized 
that the IPFP of OA patients is more highly vascularized than 
that of healthy controls, and that clearance of hemoglobin is 
severely reduced in these patients [42,43]. One last group of 
proteins includes proteins with inflammatory and immunomo
dulatory effects. This diverse group of proteins includes 
S100A9, HP, MBP and EPHX1.

Interesting to note, three markers were related to both the 
pre-operative status of the patient (MRI features) and to the 
clinical recovery: ACAN, CILP2 and MGST1. While ACAN and 
CILP2 are well-established OA markers [34–37], this is not the 
case for MGST1. However, MGST1 has a crucial role in prosta
glandin E2 synthesis [44,45], which is one of the key mediators 
of the joint homeostasis and the inflammatory response [46]. 
Prostaglandin release in the IPFP has been shown to play an 
important role in the development of OA [47,48]. This process 
can be mediated using cyclooxygenase-2 inhibitors [18].

To the best of our knowledge, our investigation is the 
largest proteomic study performed on a cohort of cartilage 
defect patients [9]. Recently, clinical associations were found 
by multiple groups between IPFP features on MRI and status 
or progression of OA. T2 signal intensity of the IPFP was 
associated with OA score and cartilage injury in an OA cohort 
[49]. Furthermore, T2 signal intensity of the IPFP was positively 
correlated with several urine and serum biochemical markers 
related to cartilage health [50]. Signal intensity alterations 
were also significantly different in patients who progressed 
in OA severity over 48 months, compared to stable patients 
[51]. Together with the results from this study, the role of the 

IPFP in diagnosis of degenerative diseases in the knee is 
rapidly emerging. Recent research suggests that the IPFP 
plays an active role in the progression of OA and other degen
erative joint disorders [52]. The protein profiles found in this 
study give more evidence to this hypothesis. Proteins that 
classically are labeled as cartilage- and inflammation-related 
were found differently abundant in the IPFP, related to clinical 
state and process, showing the strong involvement of the fat 
pad. This suggests cross-talk between the cartilage and the fat 
pad, as has been hypothesized before due to the strong 
involvement in the OA process [53]. Fortunately, the IPFP is 
a promising site for the identification of biomarkers as obtain
ing tissue biopsies from it is less invasive than from cartilage. 
Of note, the IPFP has garnered interest in the past years as 
a source of mesenchymal stem cells (MSCs), and early precli
nical studies have shown promising results for their use in 
cartilage restoration [54,55]. That we found MSC-related pro
teins such as cadherins (CDH13) and integrins.

The majority of evidence for the involvement of proteins in 
cartilage pathophysiology comes from studies in OA patients. 
Most biomarker studies in the OA field have studied late-stage 
OA patients, as the total knee replacement is a convenient 
moment of sample collection [7]. However, the early-stage CD 
patients is of high clinical relevance as there are still clinical 
treatment decisions to be made, and the clinical outcome is 
unpredictable [56]. Thus, CD patients are a very interesting 
population to study the disease progression and possible post- 
traumatic OA development. Our findings suggest that the IPFP 
could play a role in promoting a pathogenic environment upon 
CD injury, priming it for development into OA. However, there

Figure 4. Overlapping protein dysregulation across different clinical status and treatment response groups. The value represents log2 fold change. Green indicates 
upregulated differences, red indicates downregulation.
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is a high degree of heterogeneity among CD patients, for 
example, in the type of surgery that they received, and pre
vious surgery. This heterogeneity is the limitation of the current 
study: Our results represent a wide range of patients and are 
not specific for the outcome of one particular treatment. The 
markers presented give therefore an overview of the important 
proteins in the general cartilage damage and repair processes, 
but cannot be used yet as diagnostic or prognostic markers for 
individual patients. In addition, most of the clinical variables are 
linked in one way or the other, which makes the proteomic 
comparisons not independent. For example, previous surgery is 
a known negative prognostic factor for clinical outcome [4,57], 
but may also induce fibrosis in the IPFP. We cannot conclude 
from our data whether these effects are causal or associated. 
How previous surgery and potential damage/fibrosis of the 
IPFP relates to clinical outcome and joint homeostasis is 
unknown and subject to future research. The presence of 
these confounders is the major limitation of this study. 
Confounders that were analyzed were sex, which showed HP 
as fibrosis marker to be possibly influenced by imbalance in sex 
ratio in the low and high fibrosis groups. Size of the defect, 
a known influencing variable of clinical outcome [4], was ana
lyzed as part of the AMADEUS score. Furthermore, previous 
research using matrix-assisted laser desorption ionization 
mass spectrometry imaging (MALDI-MSI) showed different 
lipid profiles between IPFP areas [12]. Single-cell RNA- 
sequencing also identified 11 cell-types in the IPFP [58] 
A mixed protein profile of these cells can therefore be expected 
in the samples. The ultimate goal of our research is to equip 
surgeons with additional tools to support their daily decision- 
making. In clinical practice, using heterogeneous biopsies 
remains the most feasible approach, making the markers iden
tified in this study especially relevant for real-world applica
tions. As more data becomes available, finer subgrouping will 
be possible, enhancing diagnostic accuracy.

5. Conclusion

Overall, in the present study we showed that the IPFP pro
teome is substantially altered in different CD patient sub
groups, demonstrating its potential for biomarker 
identification. Several pathways have been described herein, 
particularly that poor recovery after surgery is related to dys
regulation in immunomodulation, inflammation and cartilage 
formation pathways. Affected pathways were related to cell 
interaction, oxidation and extracellular matrix maintenance 
and remodeling. ACAN, CILP-2 and MGST1 specifically were 
related to both pre-operative clinical status and response to 
treatment.
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